English 日本語 Русский

飞机结构状态的高效识别方法

飞机结构状态的高效识别方法

客      户
西北工业大学航空学院
关  键 词
动态模态分解、数据驱动、基于密度的带噪声应用空间聚类、模态参数识别、稳定化图
被捕捉物
飞机模型

西北工业大学航空学院贺顺教授研究团队提出了一种快速且准确地识别复杂结构(比如飞机机翼或者整个飞机)的振动特性的新方法,方法结合了动态模态分解(DMD)和基于密度的聚类算法(DBSCAN)两种技术,并开发了一种新的工具——秩稳定性图,来帮助识别真实的振动模式,去除虚假的干扰信息。DMD-DBSCAN方法具有较高的计算效率和广阔的应用前景,适用于处理大规模数据集的复杂结构模态辨识。相关研究论文《Efficient modal parameter identification using DMD-DBSCAN and rank stabilization diagrams》发表于航空航天领域中国科学院一区期刊。

NOKOV度量动作捕捉系统为研究提供【高精度的实时位移响应信号】,解决了传统位移传感器的空间布置问题,助力验证论文方法在实际复杂结构中模态辨识的适用性。NOKOV度量动作捕捉系统使用场景见下图。

图2.jpg

摄像机配置1下的静态位移测量结果

图2.jpg

摄像机配置1下的静态位移测量结果

图3.jpg

NOKOV 运动捕捉系统中动态响应测试装置、几何模型及摄像机位置

引用格式

Chengyuan Wu, Zhichun Yang, Shun He, Efficient modal parameter identification using DMD-DBSCAN and rank stabilization diagrams, Aerospace Science and Technology, Volume 161, 2025, 110112, ISSN 1270-9638, https://doi.org/10.1016/j.ast.2025.110112.

作者简介

吴承远(第一作者),西北工业大学博士在读。主要研究方向:气动弹性力学,结构动力学  

杨智春:西北工业大学教授,博士生导师,航空学院结构动力学与控制研究所所长。主要研究方向:飞行器气动弹性力学,飞行器结构动力学

贺顺(通讯作者),西北工业大学教授,博士生导师,国家级青年人才。主要研究方向:气动弹性力学、飞行器结构设计与分析、跨声速非线性颤振、高超声速流固热耦合、变体飞行器



IEEE RA-L 机械臂操纵 实时规划方法

研究利用NOKOV度量动作捕捉系统实时追踪障碍物的位置与几何特性,并将这些检测结果拟合为几何原语。度量动捕充当环境感知与几何建模的基础角色,是将真实世界中的障碍物转化为几何参数的关键桥梁。

人形机器人的数据采集与分析

北京人形机器人创新中心使用NOKOV度量动作捕捉系统采集人形机器人关键位置数据。

人形机器人学习太极拳

乐聚人形机器人基于NOKOV度量动作捕捉系统采集的人体太极拳运动数据,开展运动轨迹重定向与仿真迁移技术,实现人形机器人演绎太极拳。

动画还原潮汕非遗英歌舞

潮汕非遗英歌舞 动画还原
联系我们
如需更多应用、案例信息或产品报价,请致电 010-64922321,或在下方留言:
机器人/无人机 VR/AR/XR 运动康复 传媒娱乐
北京度量科技有限公司(总部)
Location 北京市朝阳区安慧里四区15号五矿大厦8层820室
Email info@nokov.com
Phone 010-64922321
提交成功!请您耐心等待!
欢迎关注公众号,获取更多信息
关闭