English 日本語 Русский

机器人足球比赛中多智能体动态编队的研究

机器人足球比赛中多智能体动态编队的研究

客      户
清华大学
关  键 词
机器人、协同控制、动态编队、强化学习、多智能体

从机器人足球场景出发,清华大学自动化系李翔副教授谈算法sim2real——通过这样的典型场景验证算法的实用性,并试图通过类脑算法实现对人类决策行为的模仿,最终拓宽算法的适用场景。

基于这样的目的,研究团队发表最新成果《Dynamic Formation Planning and Control for Robot Soccer Game with Multi-Agent Reinforcement Learning and Behavioral Model》:提出了一种机器人足球场景中的多智能体动态编队策略。通过用于进攻的行为模型和用于防守的强化学习,实现了队伍的攻防策略转换,适应不断变化的比赛情景。

机器人和足球的运动轨迹通过NOKOV动作捕捉系统跟踪。文章被ICARM 2024接收。

 



仿生机器人的运动规划

利用NOKOV光学定位跟踪系统,获取精度达1mm的人体下肢运动数据,并建立了准确的关节模型,实现仿生机器人运动规划。

软体机械臂运动

NOKOV度量动作捕捉系统实时提供软体机械臂各节点高精度位姿数据,助力运动学和动力学建模,最终实现软体机械臂的控制。

中科院自动化所多智能体协同控制平台编队与自主避障

中科院自动化所无人集群系统分为三个子系统,定位子系统、通信子系统与控制子系统,可实现单体无人车和无人机控制、地空协同、集群对战以及无人车、无人机编队表演等功能

通过仿生指尖接触事件实现三指机械手的连续自适应步态控制

研究人员在《Biomimetic Intelligence and Robotics》发表了题为《Continuous adaptive gaits manipulation for three-fingered robotic hands via bioinspired fingertip contact events》的文章,探讨了通过仿生方法提升三指机械手灵活性与自适应性的技术。
联系我们
如需更多应用、案例信息或产品报价,请致电 010-64922321,或在下方留言:
机器人/无人机 VR/AR/XR 运动康复 传媒娱乐
北京度量科技有限公司(总部)
Location 北京市朝阳区安慧里四区15号五矿大厦8层820室
Email info@nokov.com
Phone 010-64922321
提交成功!请您耐心等待!
欢迎关注公众号,获取更多信息
关闭