English 日本語 Русский

动捕技术助力基于映射规划框架的四旋翼飞行器自主导航研究

动捕技术助力基于映射规划框架的四旋翼飞行器自主导航研究

客      户
哈尔滨工业大学
关  键 词
四旋翼飞行器、自主导航、障碍物感知
被捕捉物
四旋翼飞行器

鲁棒性和有效性的运动规划算法是四旋翼飞行器在复杂环境下实现自主飞行的关键。环境表征作为感知模块与规划模块之间的桥梁,对生成轨迹的质量有着巨大的影响。人们提出了各种算法来构建导航地图,每种算法对应不同的规划方法。

为了提高四旋翼飞行器自主导航能力,哈尔滨工业大学的研究团队提出了一个新的映射规划框架(如图1所示)来导航在线四旋翼飞行器的飞行。在映射模块中,使用多面体来表示观察到的障碍物,从占用网格图中提取环境信息,以便为运动规划提供各种信息。规划模块中,通过构建局部拓扑图来有效地覆盖潜在搜索区域,利用该图指导基于分割运动原语的路径搜索,并采用基于多项式的优化方法得到安全、平滑的轨迹。


图1:新的映射规划框架概述

图1:新的映射规划框架概述

这种新的映射规划框架,能在线构建多面体环境,提供全面的障碍物信息,并利用设计的拓扑规划器,采用分段搜索加速策略,有效生成与障碍物有足够间隙的安全、平滑的轨迹。

大量的仿真和实验验证了这个新的映射规划框架的有效性。其中在实际飞行实验中,NOKOV度量动作捕捉设备为四旋翼飞行器提供了高精度的室内定位信息。


图2:四旋翼飞行器飞行实验

图2:四旋翼飞行器飞行实验


图3:格栅图和感应范围内的多面体环境

图3:格栅图和感应范围内的多面体环境

实验结果表明,这种新的映射规划框架在计算效率和轨迹质量方面均优于所选基准。通过实际飞行验证了该框架的鲁棒性和有效性。

参考文献

Junjie Gao, Fenghua He, Wei Zhang, and Yu Yao. (2023). Obstacle-Aware Topological Planning over Polyhedral Representation for Quadrotors. In International Conference on Robotics and Automation (ICRA).



IROS 2025 多智能体深度强化学习算法实现Crazyflie无人机在复杂环境中协同追逐

国防科大周晗老师团队在IROS 2025上发表多智能体追逃的知识增强DRL方法,度量动捕提供多架Crazyflie无人机的位置和速度数据,助力验证本文算法。

Scientific Reports:人类拥抱行为分类法及其在人形机器人中的应用研究

多飞行器集联平台的控制与状态估计框架研究

北京理工大学俞玉树老师团队在IEEE RAL,IEEE TRO和IEEE TASE上分别发表关于多飞行器集联平台(Integrated Aerial Platforms, IAPs)的论文,提出IAP的控制和状态估计框架,为飞行操作机器人执行多功能空中操作任务奠定坚实基础。NOKOV度量动作捕捉系统为IAP提供高精度位姿真值数据,助力评估本文方法。

平衡步兵户外日光下轨迹获取

清华大学类脑计算中心使用度量动捕抗日光镜头过滤强光干扰,准确识别平衡步兵(轮足机器人)表面的反光标记点,实时获取高精度运动轨迹。
联系我们
如需更多应用、案例信息或产品报价,请致电 010-64922321,或在下方留言:
机器人/无人机 VR/AR/XR 运动康复 传媒娱乐
北京度量科技有限公司(总部)
Location 北京市朝阳区安慧里四区15号五矿大厦8层820室
Email info@nokov.com
Phone 010-64922321
提交成功!请您耐心等待!
欢迎关注公众号,获取更多信息
关闭