English 日本語 Русский

ICRA 2025 连续体机械臂融合阻抗-容错控制

ICRA 2025 连续体机械臂融合阻抗-容错控制

客      户
南京理工大学自动化学院
关  键 词
腱驱动连续体机械臂 阻抗控制 容错控制 高精度轨迹跟踪
被捕捉物
连续体机械臂执行器末端

南京理工大学郭毓教授团队在ICRA 2025上发表关于腱驱动连续体机械臂(TDCM)的论文 Command Filtered Cartesian Impedance Control for Tendon Driven Continuum Manipulators with Actuator Fault Compensation。本文提出了一种结合阻抗控制与容错控制的方案,旨在解决TDCM在复杂环境中面临的两大挑战:
1. 高精度轨迹跟踪和柔顺力控
本文提出了一种有限时间笛卡尔阻抗控制方案,通过二阶低通滤波器根据末端接触力实时调整参考轨迹,并结合有限时间命令滤波反步法设计了控制器。利用李雅普诺夫函数证明系统的有限时间收敛性,确保了高精度轨迹跟踪和柔顺力控。
2. 执行器故障导致的系统性能下降
针对肌腱拮抗效应和驱动器响应滞后引发的执行器部分失效问题,本文创新性地构建了故障模型,并基于张力传感器信息设计了补偿算法,动态调节肌腱张力,显著提升系统的可靠性和鲁棒性。通过实时检测执行器的健康状态并进行补偿,即使在部分执行器失效的情况下,系统仍能保持稳定运行。
实验验证
实验在两段式TDCM原型机(图1)上进行,验证了所提出方案的有效性。实验结果表明,轨迹跟踪精度达到了0.005米,比基线方法提高了50%以上(图3)。接触障碍物时,阻抗误差稳定在0.09牛顿以内,并在脱离障碍物后能够快速恢复轨迹跟踪(图4)。这些结果表明,结合阻抗控制与容错控制的方案不仅实现了高精度轨迹跟踪,还在与环境交互时表现出良好的柔顺性,同时显著提高了系统鲁棒性。
NOKOV度量动作捕捉为本研究提供执行器高精度实时位姿数据(图5),验证了阻抗控制与容错控制结合的有效性以及系统鲁棒性。

作者介绍
郑先杰,南京理工大学自动化学院博士研究生。主要研究方向:连续型机器人建模与控制;
余朝宝,南京理工大学自动化学院博士研究生。主要研究方向:柔顺控制,智能机器人控制;
丁萌,南京理工大学自动化学院博士。主要研究方向:连续型机器人建模与控制;
刘辽雪,南京理工大学自动化学院副教授。主要研究方向:空间机器人技术,连续型机器人控制;
郭健,南京理工大学自动化学院教授、博士生导师。主要研究方向:智能控制、机器人控制;
郭毓,南京理工大学自动化学院教授、博士生导师。主要研究方向:智能机器人控制、航天器姿态控制等。



具有矢量推进的全驱动六自由度跨介质机器人

北京航空航天大学文力老师团队在 IROS 2025 提出并验证了一种具有推力矢量的六自由度全驱动跨介质机器人。该机器人实现了空中与水下完整 6-DOF 独立控制,并可自主稳定跨越水空界面。在实物实验中,研究团队采用 NOKOV度量动作捕捉系统获取机器人位姿与运动轨迹数据,为全驱动运动验证与跨介质实验与空中传感器部署实验提供位置信息精确测量支持。

游戏开发中的马匹动作捕捉

客户使用NOKOV光学动作捕捉系统,实时采集马匹运动过程中标记点的位置信息,再通过动作捕捉系统处理数据,最终将运动数据传送至Unity或Motion Builder等三维软件中,用于游戏开发。

水下复杂环境鱼情探测

湛江湾实验室 利用主动式发光标记点和度量水下动捕系统,验证水下机器人性能。

绳驱波浪运动补偿控制方法及海上试验验证

山东大学陈原教授团队针对海上补给场景,提出绳驱波浪补偿装置的控制方法,并在海上试验中得到验证。室内实验中,度量动捕数据与控制系统通信,提供高精度实时位姿反馈。
联系我们
如需更多应用、案例信息或产品报价,请致电 010-64922321,或在下方留言:
机器人/无人机 VR/AR/XR 运动康复 传媒娱乐
北京度量科技有限公司(总部)
Location 北京市朝阳区安慧里四区15号五矿大厦8层820室
Email info@nokov.com
Phone 010-64922321
提交成功!请您耐心等待!
欢迎关注公众号,获取更多信息
关闭