English 日本語 Русский

水下仿生机器人:红外动捕系统用于机器海豚开发

水下仿生机器人:红外动捕系统用于机器海豚开发

客      户
深圳大学
场地大小
6.4米×4.07米×1.50米
关  键 词
水下机器人、仿生机器鱼、机器人位姿
被捕捉物
机器海豚

研究背景

海洋动物经过长期进化,具有超凡的游动性能。鲸豚类中的海豚除了可以长时间高速游动,还可以完成跃水、空中转体等高难动作。因此,近年来很多学者以海豚为仿生对象开发机器海豚。但是多数研究的动力学模型过于复杂,计算量较大。

为了解决上述问题,深圳大学的巩伟杰老师团队基于胸鳍/尾鳍协同推进模式,采用叶片理论及基于伯努利原理和机翼理论,分别建立了机器海豚的胸鳍和尾鳍的运动学模型和动力学模型。这种模型结构简单,计算量小,便于进行动力学仿真和试验。同时通过对机器海豚运动参数进行分析,利用Matlab进行机器海豚的运动学和动力学仿真,研究不同游动模式和不同运动参数对游动性能的影响。

红外动捕系统起了什么作用

为了验证不同推进模式下机器海豚的游动性能,研究人员进行了测试试验。试验在一个640cm×407cm×150cm的水池中进行,水池周围架设8台NOKOV度量红外光学三维动作捕捉镜头,通过捕捉粘贴在机器海豚上的反光标识点(Marker点)三维空间坐标来获取其游动姿态和运动参数。

图一图一.jpg

图1-试验水池

图二图二.jpg

图2-粘贴了反光标识点的机器海豚

试验结果中,不同模式下结果与仿真结果相吻合。而试验的直游速度低于仿真结果,是由于机器海豚游动过程中波浪扰动产生的阻力。试验验证了这种胸鳍/尾鳍协同推进的动力学模型的有效性,并证明了胸鳍/尾鳍协同推进能提高机器海豚的游动性能,在相同摆频条件下,尾鳍产生主要推进力。

企业微信截图_1644465420396.png

图3-不同推进模式下的仿真与试验

这项研究有助于进一步认识和研究海豚的运动机理,从而提高机器海豚的游动性能。

除了机器海豚,NOKOV度量红外动捕系统还应用于多个仿生机器人开发项目,用于获取动物运动数据,或评估仿生机器人性能。

阅读链接:

https://mp.weixin.qq.com/s/aUyb4uIZTzLnygQDRsiqcg

https://mp.weixin.qq.com/s/NcIIS-bng4-VyvP0KuMY9w

此外,我们还开发了用于水下场景的动作捕捉系统。

阅读链接:

https://www.nokov.com/motion-capture-marine-underwater.html

参考文献:[1]杨忠华,巩伟杰.胸鳍/尾鳍协同推进的机器海豚动力学建模与仿真[J].船舶工程,2021,43(09):140-145+151.DOI:10.13788/j.cnki.cbgc.2021.09.25.



仿生机器人的运动规划

利用NOKOV光学定位跟踪系统,获取精度达1mm的人体下肢运动数据,并建立了准确的关节模型,实现仿生机器人运动规划。

软体机械臂运动

NOKOV度量动作捕捉系统实时提供软体机械臂各节点高精度位姿数据,助力运动学和动力学建模,最终实现软体机械臂的控制。

中科院自动化所多智能体协同控制平台编队与自主避障

中科院自动化所无人集群系统分为三个子系统,定位子系统、通信子系统与控制子系统,可实现单体无人车和无人机控制、地空协同、集群对战以及无人车、无人机编队表演等功能

通过仿生指尖接触事件实现三指机械手的连续自适应步态控制

研究人员在《Biomimetic Intelligence and Robotics》发表了题为《Continuous adaptive gaits manipulation for three-fingered robotic hands via bioinspired fingertip contact events》的文章,探讨了通过仿生方法提升三指机械手灵活性与自适应性的技术。
联系我们
如需更多应用、案例信息或产品报价,请致电 010-64922321,或在下方留言:
机器人/无人机 VR/AR/XR 运动康复 传媒娱乐
北京度量科技有限公司(总部)
Location 北京市朝阳区安慧里四区15号五矿大厦8层820室
Email info@nokov.com
Phone 010-64922321
提交成功!请您耐心等待!
欢迎关注公众号,获取更多信息
关闭