English 日本語 Русский

经典案例

机器人足球比赛中多智能体动态编队的研究

研究团队发表最新成果《Dynamic Formation Planning and Control for Robot Soccer Game with Multi-Agent Reinforcement Learning and Behavioral Model》:提出了一种机器人足球场景中的多智能体动态编队策略。通过用于进攻的行为模型和用于防守的强化学习,实现了队伍的攻防策略转换,适应不断变化的比赛情景。

无人车位姿数据获取

北京工业大学利用光学动作捕捉系统,追踪记录和分析两辆无人车的位姿数据,实现无人系统的集群协同控制与规划

密集环境中的自组织雷诺无人飞行器群

由7架四旋翼无人机组成的编队,在森林式密集障碍环境中灵活避障,同时实现编队维护——天津工业大学研究成果

一种复杂障碍环境中基于在线规划的无人机编队安全控制方法

本文介绍了一种基于履带式移动机器人的多机器人协作运输系统,可在非平整路面协同运输60公斤的有效载荷。

基于可穿戴运动传感器的机器人示教学习与泛化方法

本文提出了一种基于可穿戴惯性传感器的机器人示教学习和泛化的方法,利用NOKOV光学动作捕捉系统作为“金标准”,验证了自研的可穿戴惯性动作捕捉系统的精度。

动作捕捉用于差速驱动移动基座的可变形机器人轨迹优化研究

浙江大学为解决可变形机器人在复杂三维环境中的轨迹规划问题,提出一种基于差速驱动移动基座的移动机器人的轨迹优化方法,并使用NOKOV动作捕捉设备验证了该方法的有效性。

动捕技术助力基于映射规划框架的四旋翼飞行器自主导航研究

哈尔滨工业大学提出一种新的映射规划框架,以提高四旋翼飞行器在复杂环境下的自主导航能力,并使用NOKOV动作捕捉设备验证了该框架的有效性和鲁棒性。
联系我们
如需更多应用、案例信息或产品报价,请致电 010-64922321,或在下方留言:
机器人/无人机 VR/AR/XR 运动康复 传媒娱乐
北京度量科技有限公司(总部)
Location 北京市朝阳区安慧里四区15号五矿大厦8层820室
Email info@nokov.com
Phone 010-64922321
提交成功!请您耐心等待!
欢迎关注公众号,获取更多信息
关闭