English
日本語
Русский
机器人无人机
机器人无人机
无人机集群、协同控制和移动机器人
NOKOV 度量动作捕捉的天地空多智能体的协同控制
外骨骼机器人
使外骨骼机器人运动步态更加拟人化,实现人机共融
仿生机器人
提供仿生机器人的步态和运动的追踪定位
手部动作捕捉与灵巧手
涵盖灵巧手、机械臂、软体机器人等应用
机械臂
提供高精度六自由度运动学数据,实现机械臂的精准定位
船舶、海洋和水下应用
水动力实验室中,船舶或水下运动物体六自由度运动数据获取
医疗机器人&高精度手术导航
手术导航、手术机器人、连续体机器人、软体机器人
位移测量&大范围三坐标测量
快速获取位移和变形信息
虚拟现实
运动康复
传媒娱乐
数字人虚拟直播
影视动画动捕实训室
虚拟拍摄/XR
游戏、影视动画制作
产品
动作捕捉系统选配
相机
Mars系列
水下动捕相机
Pluto系列
Orbit系列
软件
同步设备
配件
AI Markerless动作捕捉
Astra无标记点
动作捕捉系统
动作捕捉系统套装
VRT动作捕捉系统套装
机器人开发平台
Crazyflie & Crazyswarm
多智能体集群编队实验平台
开发者工具
多模态数据捕获与管理
集成产品
查看全部集成产品
资源及支持
技术资讯
经典案例
相关论文
常见问题
IROS 2025专栏
经典案例
全部
步态分析
运动分析
生命科学
虚拟现实
传媒娱乐
机器人、无人机和工业
人体
动物
并联机器人
轮足机器人
农业机器人
人形机器人
软体机器人
巡检机器人
医疗机器人/手术机器人/机器人辅助手术
仿生机器人
无人机/无人车
外骨骼/可穿戴设备
机械臂
移动机器人
连续体机器人
编队集群/协同/避障/防撞
操纵
导航/定位/SLAM
灵巧手/手部动捕
人机交互/人机协作
海洋与水下
位移/形变测量/精准测量
遥操作
运动规划/轨迹规划/路径规划
人机工效
人形机器人的数据采集与分析
北京人形机器人创新中心使用NOKOV度量动作捕捉系统采集人形机器人关键位置数据。
人形机器人学习太极拳
乐聚人形机器人基于NOKOV度量动作捕捉系统采集的人体太极拳运动数据,开展运动轨迹重定向与仿真迁移技术,实现人形机器人演绎太极拳。
Scientific Reports:人类拥抱行为分类法及其在人形机器人中的应用研究
仿蝠鲼软体机器人实现高速多模态游动
本研究提出了一种受蝠鲼启发的新型软体游泳机器人,最高游泳速度可达每秒12.23厘米,最大转弯角速度为每秒22.5度,同时可实现前后平移、转弯和翻转多模态游动。NOKOV度量动作捕捉系统为研究提供机器人游泳实时速度数据,记录其在不同驱动条件下的运动状态,助力优化机器人的性能和设计。
Nano Energy 水下机器人近场感知与速度评估由深度学习辅助的仿海豹胡须传感器实现
本研究设计了一种仿生水下摩擦电胡须传感器,可被动感知多种水动力流场,有望成为水下航行器在本地导航任务中的整合工具。NOKOV度量动作捕捉系统提供高精度的水下航行器位姿参考数据,助力实现水下航行器的近场感知与在线状态评估。
动作捕捉用于蛇运动分析及蛇形机器人开发
在多环境蛇运动接触分析及其鳞片摩擦性能测试研究中,使用NOKOV动作捕捉系统采集数据并进行分析设计了一种关于蛇运动接触力学测试装置,进一步探究赤链蛇运动接触行为。
水下仿生机器人:红外动捕系统用于机器海豚开发
在水下仿生机器人的研发中,利用红外动捕技术,捕捉粘贴在机器海豚上的反光标识点三维空间坐标来获取其游动姿态和运动参数,用于提高水下机器鱼的游动性能。
具有编码能力的可展开结构人造肌肉
人造肌肉是通过变形产生动力的执行机构,其发展可以极大加速机器人、人工假肢等研究的技术进程,利用6个NOKOV度量动作捕捉镜头跟踪结构各点的实时空间位置,同时计算不同条件下距离及角度,实现比较模型分析结果与动作捕捉系统实测结果。
多指灵巧手设计
在受试者手部关节处贴了25个反光标记点,使用NOKOV(度量)光学定位系统采集多位受试者的抓取运动数据,对手部关节位置信息进行分析,计算各关节间角度变化、角速度变化、指尖运动轨迹及相关系数并进行对比分析。
蛇形机器人高空电缆巡检
使用NOKOV(度量)光学动作捕捉系统来捕捉蛇形机器人的关节运动,获取蛇形机器人运动过程中每个关节的位置坐标和角度变化,助力研发蛇形机器人高空电缆巡检。
仿生机器人的运动规划
利用NOKOV光学定位跟踪系统,获取精度达1mm的人体下肢运动数据,并建立了准确的关节模型,实现仿生机器人运动规划。
动作捕捉助力多足机器人各腿间的数据协调
NOKOV(度量)光学三维动作捕捉系统,采用8个Mars 2H动作捕捉镜头,捕捉多足机器人“躯干”和“四肢”的关节位姿信息,以60Hz的采样频率进行了机器人运动过程中的动作数据采集,得到各反光标志点三维空间坐标,实现机器人位姿数据采集。
四足仿生机器人的步态优化
围绕四足仿生机器人开展了四足动物与环境之间的交互机理和步态分析研究,建立了四足机器人的仿生步态规划方法、动态稳定性判断方法和外界强干扰下的自适应稳定恢复方法。
仿生扑翼飞行器设计 北航国际创新研究院
北京航空航天大学国际创新研究院利用NOKOV度量动作捕捉系统,结合翼面布设的轻质量贴片式反光标记材料(轻质量、降干扰)以高效获取仿生扑翼各关键点的位姿数据,为飞行器设计研究提供可靠支持。
半机械昆虫自主导航控制
北京理工大学机械与车辆学院提出了“构建虚拟视觉信号”的半机械昆虫飞行控制技术,通过向昆虫视叶施加模拟视叶场电位的脉冲信号,调节视叶电位活动,使昆虫产生视觉假象,从而做出行为响应。
四足机器人步态分析
南京理工大学机械工程学院四足机器人步态分析。
仿生四足机器人步态规划研究
哈尔滨工业大学郑州研究院,使用光学动捕系统,捕捉四足机器人关节点坐标、速度、加速度等数据,用于四足机器人步态规划研究。
通过强化学习算法增强蝴蝶状扑翼飞行器的升力
通过强化学习-PPO算法提升并打造足以让蝶形FWV不借助额外辅助或气流起飞的升力,并利用NOKOV度量动作捕捉系统监测到上挥阶段升力峰值与前后翼开闭以及柔性变形有直接关系,而这些发现用传统的空气动力学方法并不容易预测或发现。
六足机器人结构优化可载重20kg,适应河床、冰面等复杂地形
基于优化方案的足式载重机器人优化方案,样机可载重20kg,稳定横向移动,并通过河床、冰面等复杂地形测试。
仿生机器鳄鱼:基于动作捕捉的仿生步态规划
采用NOKOV度量动作捕捉系统进行步态观测实验,收集分析鳄鱼的运动数据,以此为基础进行机器鳄鱼的仿生步态规划。
联系我们
如需更多应用、案例信息或产品报价,请致电 010-64922321,或在下方留言:
机器人/无人机
VR/AR/XR
运动康复
传媒娱乐
提交
北京度量科技有限公司(总部)
北京市朝阳区安慧里四区15号五矿大厦8层820室
info@nokov.com
010-64922321
提交成功!请您耐心等待!
欢迎关注公众号,获取更多信息
关闭