English 日本語 Русский

动作捕捉助力无人车多源传感器信息融合导航技术

动作捕捉助力无人车多源传感器信息融合导航技术

客      户
哈尔滨工业大学
场地大小
5米×5米
关  键 词
无人车、定位追踪、算法验证
被捕捉物
无人车

无人车是一种可以进行路径规划和环境感知的智能自主车,已成为当前智能车辆的热门发展方向。无人车能够通过车载传感器识别周围情况和自身状态信息,自身具有导航、定位的功能,能够完成路径规划、寻找特定目标等过程,对于智能化无人车的研究,其核心内容是导航控制技术。

在不同天气、不同时间条件下,仅靠单一导航无法满足高精度定位与导航的需求,不同环境下无人车上会安装多种传感器,传感器的特性各不相同,目前常用的传感器有惯性测量元件(IMU)、超宽带(UWB)、轮式里程计等。

为了让无人车系统具有更高的自适应性和可靠性,哈尔滨工业大学的研究人员研究了基于多源传感器信息融合的导航系统,针对传感器信息异步融合问题和存在传感器失效的情况,使用因子图模型建立融合框架,将各个传感器信息抽象成因子,采用一种基于贝叶斯树形结构的增量平滑优化算法(ISAM2)对传感器信息进行处理和融合,该方法能够保证精度接近最小二乘方法的同时,也具有高效的计算效率,能够较大提高整个系统鲁棒性和可靠性。

研究主要针对室内环境,无人车已相对低速运行,融合惯性测量元件、超宽带、里程计三种传感器数据。为了验证算法的性能,研究人员搭建了多传感器信息融合平台。平台采用scout2.0移动机器四轮车,车载传感器包括MTi-G-700(IMU)、LinkTrack S(UWB) 和里程计(ODOM) ,实验平台基于Ubuntu系统,并利用ROS进行数据同步采集。

1659591976160234.png

UWB基站布置位置

1659592016261881.png

IMU、UWB安装位置

为了获取小车的位置真实值,实验中使用NOKOV度量动作捕捉系统,通过布置在场地上方的16个Mars镜头(场地约为5m×5m),对粘贴在小车上的三个反光标识点进行识别,从而确定无人车的真实位置。由于动作捕捉系统定位精度达到亚毫米级,是作为小车运动轨迹真值的最佳选择。

1659592115757029.png

NOKOV动作捕捉系统

1659592145912651.png

刚体安装位置

为了分析定位效果,实验主要将IMU+UWB+ODOM 融合数据和动捕系统采集的真实值做对比,同时分析对于单体传感器的定位效果与真实值的对比。

可以看出单传感器存在一定局限性,融合算法能够提升单传感器的定位效果,说明了本文算法的可行性。同时研究人员还分析了方法的效率和鲁棒性,证明了该方法极大的提高了计算效率,并具有一定鲁棒性,在部分传感器失效时也能获取较为准确的定位信息。

参考文献:沈贺兵. 无人车多源传感器信息融合导航技术研究[D].哈尔滨工业大学,2021.DOI:10.27061/d.cnki.ghgdu.2021.004020.




原文链接:https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD202201&filename=1

IROS 2025 多智能体深度强化学习算法实现Crazyflie无人机在复杂环境中协同追逐

国防科大周晗老师团队在IROS 2025上发表多智能体追逃的知识增强DRL方法,度量动捕提供多架Crazyflie无人机的位置和速度数据,助力验证本文算法。

Scientific Reports:人类拥抱行为分类法及其在人形机器人中的应用研究

多飞行器集联平台的控制与状态估计框架研究

北京理工大学俞玉树老师团队在IEEE RAL,IEEE TRO和IEEE TASE上分别发表关于多飞行器集联平台(Integrated Aerial Platforms, IAPs)的论文,提出IAP的控制和状态估计框架,为飞行操作机器人执行多功能空中操作任务奠定坚实基础。NOKOV度量动作捕捉系统为IAP提供高精度位姿真值数据,助力评估本文方法。

平衡步兵户外日光下轨迹获取

清华大学类脑计算中心使用度量动捕抗日光镜头过滤强光干扰,准确识别平衡步兵(轮足机器人)表面的反光标记点,实时获取高精度运动轨迹。
联系我们
如需更多应用、案例信息或产品报价,请致电 010-64922321,或在下方留言:
机器人/无人机 VR/AR/XR 运动康复 传媒娱乐
北京度量科技有限公司(总部)
Location 北京市朝阳区安慧里四区15号五矿大厦8层820室
Email info@nokov.com
Phone 010-64922321
提交成功!请您耐心等待!
欢迎关注公众号,获取更多信息
关闭