English 日本語 Русский

动作捕捉系统用于地下隧道移动机器人定位与建图

动作捕捉系统用于地下隧道移动机器人定位与建图

客      户
中国矿业大学机电工程学院
关  键 词
激光-超宽带融合SLAM系统,地下隧道移动机器人,机器人定位与建图
被捕捉物
地下隧道移动机器人
核心配置
8个NOKOV Mars2H 动作捕捉镜头

在煤矿巷道、地铁隧道等危险、幽闭的地下场景下,使用移动机器人完成探测、开采和搜救任务安全且高效。地下机器人自主智能的完成任务,精准的定位和地图构建是前提和关键。

图一.png

机器人在地下环境中自主运行时往往没有先验的地图信息,而且不能使用GPS进行定位,需要机器人在未知环境创建地图,同时利用地图进行自主定位和导航,即SLAM技术。

由于地下环境中场景在几何特征上极其相似,且激光雷达点云在远处分布极少,基于激光雷达的SLAM方法效果不好;中国矿业大学的研究人员采用一种多传感器融合的方法,基于图优化的框架将 UWB和IMU融合定位系统提供的位置约束添加到位姿图优化约束中,为激光雷达扫描匹配提供可靠的初始估计,多种传感器协同估计移动机器人状态。

首先研究人员提出了一种基于扩展卡尔曼滤波器融合UWB测距信息和IMU加速度信息的算法,通过增广状态向量,将加速度和加速度的偏差也进行估计,能够提高精度并降低延迟,为移动机器人在地下环境运动提供可靠的定位估计。 

为了验证算法的有效性和定位精度,以及对狭长隧道环境的实用性,研究人员设计了室内验证实验。实验使用Turtlebot2移动机器人作为机器人平台,并在平台上固定IMU和UWB移动节点。UWB使用4个锚节点构建定位系统。

1653546706111298.png

场地周围布置8NOKOV Mars2H 动作捕捉镜头,利用NOKOV动作捕捉系统跟踪粘贴在移动机器人上的反光标识点,来获取机器人的真实轨迹。

1653546730784323.png

通过对比NOKOV动作捕捉系统采集的参考轨迹(真实轨迹)和EKF算法输出的估计轨迹可以看出,估计值与真实值基本符合。

图四.png

验证过上述定位方案性能后,研究人员开发了地下狭长隧道环境的激光/超宽带融合SLAM 算法,并在实际地下隧道进行实验,证明了该方法更接近实际轨迹且不存在累积误差。

参考文献:[1]赵宇. 面向地下狭长隧道的移动机器人定位与建图方法研究[D].中国矿业大学,2021.




原文链接:https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFDTEMP&filename=102

IJRR 连续体机器人预设行为自适应控制(BPAC)框架

中山大学谭宁老师团队在IJRR上发表连续体机器人预设行为自适应控制(BPAC)框架,度量动捕为实验提供执行器位置真值,助力验证控制方法有效性。

《三体》经典台球场景沉浸式体验

置身建发·三体沉浸式艺术展,体验《三体》经典台球场景:两球相撞,撞出无限可能!物理学?不存在的!

慕尼黑工大 水下机器人研究

慕尼黑工大MIRMI研究院的Daniel Dücker老师,利用NOKOV度量水下动作捕捉系统,获取水下机器人的高精度位姿真值,用于生成训练数据、验证控制与估计算法。

如何监测水下柔性管道的高频振动?

山东科技大学海洋土木工程实验室李朋老师团队利用NOKOV度量水下动作捕捉系统监测水下柔性管道振动。
联系我们
如需更多应用、案例信息或产品报价,请致电 010-64922321,或在下方留言:
机器人/无人机 VR/AR/XR 运动康复 传媒娱乐
北京度量科技有限公司(总部)
Location 北京市朝阳区安慧里四区15号五矿大厦8层820室
Email info@nokov.com
Phone 010-64922321
提交成功!请您耐心等待!
欢迎关注公众号,获取更多信息
关闭