English 日本語 Русский

动作捕捉系统用于地下隧道移动机器人定位与建图

动作捕捉系统用于地下隧道移动机器人定位与建图

客      户
中国矿业大学机电工程学院
关  键 词
激光-超宽带融合SLAM系统,地下隧道移动机器人,机器人定位与建图
被捕捉物
地下隧道移动机器人
核心配置
8个NOKOV Mars2H 动作捕捉镜头

在煤矿巷道、地铁隧道等危险、幽闭的地下场景下,使用移动机器人完成探测、开采和搜救任务安全且高效。地下机器人自主智能的完成任务,精准的定位和地图构建是前提和关键。

图一.png

机器人在地下环境中自主运行时往往没有先验的地图信息,而且不能使用GPS进行定位,需要机器人在未知环境创建地图,同时利用地图进行自主定位和导航,即SLAM技术。

由于地下环境中场景在几何特征上极其相似,且激光雷达点云在远处分布极少,基于激光雷达的SLAM方法效果不好;中国矿业大学的研究人员采用一种多传感器融合的方法,基于图优化的框架将 UWB和IMU融合定位系统提供的位置约束添加到位姿图优化约束中,为激光雷达扫描匹配提供可靠的初始估计,多种传感器协同估计移动机器人状态。

首先研究人员提出了一种基于扩展卡尔曼滤波器融合UWB测距信息和IMU加速度信息的算法,通过增广状态向量,将加速度和加速度的偏差也进行估计,能够提高精度并降低延迟,为移动机器人在地下环境运动提供可靠的定位估计。 

为了验证算法的有效性和定位精度,以及对狭长隧道环境的实用性,研究人员设计了室内验证实验。实验使用Turtlebot2移动机器人作为机器人平台,并在平台上固定IMU和UWB移动节点。UWB使用4个锚节点构建定位系统。

1653546706111298.png

场地周围布置8NOKOV Mars2H 动作捕捉镜头,利用NOKOV动作捕捉系统跟踪粘贴在移动机器人上的反光标识点,来获取机器人的真实轨迹。

1653546730784323.png

通过对比NOKOV动作捕捉系统采集的参考轨迹(真实轨迹)和EKF算法输出的估计轨迹可以看出,估计值与真实值基本符合。

图四.png

验证过上述定位方案性能后,研究人员开发了地下狭长隧道环境的激光/超宽带融合SLAM 算法,并在实际地下隧道进行实验,证明了该方法更接近实际轨迹且不存在累积误差。

参考文献:[1]赵宇. 面向地下狭长隧道的移动机器人定位与建图方法研究[D].中国矿业大学,2021.




原文链接:https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFDTEMP&filename=102

IROS 2025 多智能体深度强化学习算法实现Crazyflie无人机在复杂环境中协同追逐

国防科大周晗老师团队在IROS 2025上发表多智能体追逃的知识增强DRL方法,度量动捕提供多架Crazyflie无人机的位置和速度数据,助力验证本文算法。

Scientific Reports:人类拥抱行为分类法及其在人形机器人中的应用研究

多飞行器集联平台的控制与状态估计框架研究

北京理工大学俞玉树老师团队在IEEE RAL,IEEE TRO和IEEE TASE上分别发表关于多飞行器集联平台(Integrated Aerial Platforms, IAPs)的论文,提出IAP的控制和状态估计框架,为飞行操作机器人执行多功能空中操作任务奠定坚实基础。NOKOV度量动作捕捉系统为IAP提供高精度位姿真值数据,助力评估本文方法。

平衡步兵户外日光下轨迹获取

清华大学类脑计算中心使用度量动捕抗日光镜头过滤强光干扰,准确识别平衡步兵(轮足机器人)表面的反光标记点,实时获取高精度运动轨迹。
联系我们
如需更多应用、案例信息或产品报价,请致电 010-64922321,或在下方留言:
机器人/无人机 VR/AR/XR 运动康复 传媒娱乐
北京度量科技有限公司(总部)
Location 北京市朝阳区安慧里四区15号五矿大厦8层820室
Email info@nokov.com
Phone 010-64922321
提交成功!请您耐心等待!
欢迎关注公众号,获取更多信息
关闭