从机器人足球场景出发,清华大学自动化系李翔副教授谈算法sim2real——通过这样的典型场景验证算法的实用性,并试图通过类脑算法实现对人类决策行为的模仿,最终拓宽算法的适用场景。
基于这样的目的,研究团队发表最新成果《Dynamic Formation Planning and Control for Robot Soccer Game with Multi-Agent Reinforcement Learning and Behavioral Model》:提出了一种机器人足球场景中的多智能体动态编队策略。通过用于进攻的行为模型和用于防守的强化学习,实现了队伍的攻防策略转换,适应不断变化的比赛情景。
机器人和足球的运动轨迹通过NOKOV动作捕捉系统跟踪。文章被ICARM 2024接收。
更多详情,请留言
-
您可致电010-64922321或在右侧留言,获取您专属的动作捕捉解决方案与报价单
-
- 领域 *
- 提交留言
