English 日本語 Русский

手势识别模型训练

手势识别模型训练

客      户
哈工大深圳校区理学院
场地大小
6米×4米×2.6米
关  键 词
人机交互、手势识别、算法训练
被捕捉物
手部单点轨迹
核心配置
8个Mars 2H动作捕捉镜头

人机之间的交互性是虚拟现实技术的关键特征,在智能硬件持续更新和移动网络不断提速的今天,人机交互方式得到了快速的发展,其中手势是当今热门的人机交互方式。目前在智能汽车、可穿戴设备、汽车电子、智能手机等领域,都已经使用了手势交互作为新一代的人机交互方式。

官网图一.jpg

实现手势交互,首先要完成手势数据的采集。实现数据采集一般有两种方式:基于摄像头图像的视觉手势捕捉、基于传感器追踪的惯性手势捕捉。但这两种方式的手势捕捉有捕捉精度不够、较多数据噪声,需要进行数据预处理工作的缺点。哈尔滨工业大学理学院王一峰博士对智能手环的手势交互做了研究。

官网图二.jpg

王一峰博士使用NOKOV(度量)光学三维动作捕捉系统获取手势数据。通过在手环表面贴上反光标志点(marker),基于红外光学的动作捕捉系统可实时输出marker的三维坐标,戴着手环做手势时,不同手势的信息就能以marker位置的变化体现,精度达到亚毫米级。而手部运动的速度、加速度等信息也可由动作捕捉系统提供。这些数据可通过NOKOV度量动作捕捉提供的丰富SDK接口,直接导入到不同的系统中。省去了研究者大量数据预处理的时间,让他们能更好地进行分类识别算法的研究上。

通过导入的数据信息训练好分类识别模型后,以26个字母的各种手势做测试样本进行算法验证,统计通过连续实时测试手势样本的正确识别频数、错误分类的类别及其频数,完成识别分类的准确率分析。




IEEE RA-L 机械臂操纵 实时规划方法

研究利用NOKOV度量动作捕捉系统实时追踪障碍物的位置与几何特性,并将这些检测结果拟合为几何原语。度量动捕充当环境感知与几何建模的基础角色,是将真实世界中的障碍物转化为几何参数的关键桥梁。

人形机器人的数据采集与分析

北京人形机器人创新中心使用NOKOV度量动作捕捉系统采集人形机器人关键位置数据。

人形机器人学习太极拳

乐聚人形机器人基于NOKOV度量动作捕捉系统采集的人体太极拳运动数据,开展运动轨迹重定向与仿真迁移技术,实现人形机器人演绎太极拳。

动画还原潮汕非遗英歌舞

潮汕非遗英歌舞 动画还原
联系我们
如需更多应用、案例信息或产品报价,请致电 010-64922321,或在下方留言:
机器人/无人机 VR/AR/XR 运动康复 传媒娱乐
北京度量科技有限公司(总部)
Location 北京市朝阳区安慧里四区15号五矿大厦8层820室
Email info@nokov.com
Phone 010-64922321
提交成功!请您耐心等待!
欢迎关注公众号,获取更多信息
关闭